文章内容转载自黑马程序员C++提高编程讲义,如有侵权,请联系作者删除


1.2 函数模板

  • C++另一种编程思想称为 ==泛型编程== ,主要利用的技术就是模板

  • C++提供两种模板机制:函数模板类模板

1.2.1 函数模板语法

函数模板作用:

建立一个通用函数,其函数返回值类型和形参类型可以不具体制定,用一个虚拟的类型来代表。

语法:

template<typename T>
函数声明或定义

解释:

template --- 声明创建模板

typename --- 表面其后面的符号是一种数据类型,可以用class代替

T --- 通用的数据类型,名称可以替换,通常为大写字母

示例:

//交换整型函数
void swapInt(int& a, int& b) {
int temp = a;
a = b;
b = temp;
}

//交换浮点型函数
void swapDouble(double& a, double& b) {
double temp = a;
a = b;
b = temp;
}

//利用模板提供通用的交换函数
template<typename T>
void mySwap(T& a, T& b)
{
T temp = a;
a = b;
b = temp;
}

void test01()
{
int a = 10;
int b = 20;

//swapInt(a, b);

//利用模板实现交换
//1、自动类型推导
mySwap(a, b);

//2、显示指定类型
mySwap<int>(a, b);

cout << "a = " << a << endl;
cout << "b = " << b << endl;

}

int main() {

test01();

system("pause");

return 0;
}

自己写的:

#include<iostream>
using namespace std;
//函数模板

//两个整型交换函数
void swapInt(int& a, int& b) {
int temp = a;
a = b;
b = temp;
}

//两个浮点型交换函数
void swapDouble(double& a, double& b) {
double temp = a;
a = b;
b = temp;
}

//模板
template<typename T> //声明一个模板,告诉编译器后面的代码中紧跟的T不要报错,T是一个通用的数据类型
void mySwap(T& a, T& b) {
T temp = a;
a = b;
b = temp;
}

void test01() {
int a = 10;
int b = 20;
//swapInt(a, b);
//利用函数模板
//1、自动类型推导:由编译器自动推导,根据传入的数据
mySwap(a, b);
cout << a << " " << b << endl;

double c = 1.1;
double d = 2.2;
//swapDouble(c, d);
//2、显示指定类型
mySwap<double>(c, d);//这里尖括号的数据类型对应T
cout << c << " " << d << endl;
}
int main() {
test01();
return 0;
}

总结:

  • 函数模板利用关键字 template
  • 使用函数模板有两种方式:自动类型推导、显示指定类型
  • 模板的目的是为了提高复用性,将类型参数化

1.2.2 函数模板注意事项

注意事项:

  • 自动类型推导,必须推导出一致的数据类型T,才可以使用

  • 模板必须要确定出T的数据类型,才可以使用

示例:

//利用模板提供通用的交换函数
template<class T>
void mySwap(T& a, T& b)
{
T temp = a;
a = b;
b = temp;
}


// 1、自动类型推导,必须推导出一致的数据类型T,才可以使用
void test01()
{
int a = 10;
int b = 20;
char c = 'c';

mySwap(a, b); // 正确,可以推导出一致的T
//mySwap(a, c); // 错误,推导不出一致的T类型
}


// 2、模板必须要确定出T的数据类型,才可以使用
template<class T>
void func()
{
cout << "func 调用" << endl;
}

void test02()
{
//func(); //错误,模板不能独立使用,必须确定出T的类型
func<int>(); //利用显示指定类型的方式,给T一个类型,才可以使用该模板
}

int main() {

test01();
test02();

system("pause");

return 0;
}

自己写的:

#include<iostream>
using namespace std;
template<class T>
void mySwap(T& a, T& b) {
T temp = a;
a = b;
b = temp;
}


//1、自动类型推导,必须推导出一致的数据类型T才可以使用
void test01() {
int a = 10;
int b = 20;

char c = 'c';
mySwap(a, b);
cout << a << " " << b << endl;//正常输出

//mySwap(a, c);//错误,推导出不一致的的T类型
}

//2、模板必须要确定出T的数据类型,才可以使用
template<class T>
void func() {
cout << "func调用" << endl;
}
void test02() {
//func();//没有确定T的数据类型,无法调用

//解决方法:
func<int>();
}

int main() {
test01();
test02();
return 0;
}

​ 总结:

  • 使用模板时必须确定出通用数据类型T,并且能够推导出一致的类型

1.2.3 函数模板案例

案例描述:

  • 利用函数模板封装一个排序的函数,可以对不同数据类型数组进行排序
  • 排序规则从大到小,排序算法为选择排序
  • 分别利用char数组int数组进行测试

示例:

//交换的函数模板
template<typename T>
void mySwap(T &a, T&b)
{
T temp = a;
a = b;
b = temp;
}


template<class T> // 也可以替换成typename
//利用选择排序,进行对数组从大到小的排序
void mySort(T arr[], int len)
{
for (int i = 0; i < len; i++)
{
int max = i; //最大数的下标
for (int j = i + 1; j < len; j++)
{
if (arr[max] < arr[j])
{
max = j;
}
}
if (max != i) //如果最大数的下标不是i,交换两者
{
mySwap(arr[max], arr[i]);
}
}
}
template<typename T>
void printArray(T arr[], int len) {

for (int i = 0; i < len; i++) {
cout << arr[i] << " ";
}
cout << endl;
}
void test01()
{
//测试char数组
char charArr[] = "bdcfeagh";
int num = sizeof(charArr) / sizeof(char);
mySort(charArr, num);
printArray(charArr, num);
}

void test02()
{
//测试int数组
int intArr[] = { 7, 5, 8, 1, 3, 9, 2, 4, 6 };
int num = sizeof(intArr) / sizeof(int);
mySort(intArr, num);
printArray(intArr, num);
}

int main() {

test01();
test02();

system("pause");

return 0;
}

总结:模板可以提高代码复用,需要熟练掌握

1.2.4 普通函数与函数模板的区别

普通函数与函数模板区别:

  • 普通函数调用时可以发生自动类型转换(隐式类型转换)
  • 函数模板调用时,如果利用自动类型推导,不会发生隐式类型转换
  • 如果利用显示指定类型的方式,可以发生隐式类型转换

示例:

//普通函数
int myAdd01(int a, int b)
{
return a + b;
}

//函数模板
template<class T>
T myAdd02(T a, T b)
{
return a + b;
}

//使用函数模板时,如果用自动类型推导,不会发生自动类型转换,即隐式类型转换
void test01()
{
int a = 10;
int b = 20;
char c = 'c';

cout << myAdd01(a, c) << endl; //正确,将char类型的'c'隐式转换为int类型 'c' 对应 ASCII码 99

//myAdd02(a, c); // 报错,使用自动类型推导时,不会发生隐式类型转换

myAdd02<int>(a, c); //正确,如果用显示指定类型,可以发生隐式类型转换
}

int main() {

test01();

system("pause");

return 0;
}

总结:建议使用显示指定类型的方式,调用函数模板,因为可以自己确定通用类型T

1.2.5 普通函数与函数模板的调用规则

调用规则如下:

  1. 如果函数模板和普通函数都可以实现,优先调用普通函数
  2. 可以通过空模板参数列表来强制调用函数模板
  3. 函数模板也可以发生重载
  4. 如果函数模板可以产生更好的匹配,优先调用函数模板

示例:

//普通函数与函数模板调用规则
void myPrint(int a, int b)
{
cout << "调用的普通函数" << endl;
}

template<typename T>
void myPrint(T a, T b)
{
cout << "调用的模板" << endl;
}

template<typename T>
void myPrint(T a, T b, T c)
{
cout << "调用重载的模板" << endl;
}

void test01()
{
//1、如果函数模板和普通函数都可以实现,优先调用普通函数
// 注意 如果告诉编译器 普通函数是有的,但只是声明没有实现,或者不在当前文件内实现,就会报错找不到
int a = 10;
int b = 20;
myPrint(a, b); //调用普通函数

//2、可以通过空模板参数列表来强制调用函数模板
myPrint<>(a, b); //调用函数模板

//3、函数模板也可以发生重载
int c = 30;
myPrint(a, b, c); //调用重载的函数模板

//4、 如果函数模板可以产生更好的匹配,优先调用函数模板
char c1 = 'a';
char c2 = 'b';
myPrint(c1, c2); //调用函数模板
}

int main() {

test01();

system("pause");

return 0;
}

总结:既然提供了函数模板,最好就不要提供普通函数,否则容易出现二义性

1.2.6 模板的局限性

局限性:

  • 模板的通用性并不是万能的

例如:

template<class T>
void f(T a, T b)
{
a = b;
}

在上述代码中提供的赋值操作,如果传入的a和b是一个数组,就无法实现了

再例如:

template<class T>
void f(T a, T b)
{
if(a > b) { ... }
}

在上述代码中,如果T的数据类型传入的是像Person这样的自定义数据类型,也无法正常运行

因此C++为了解决这种问题,提供模板的重载,可以为这些特定的类型提供具体化的模板

示例:

#include<iostream>
using namespace std;

#include <string>

class Person
{
public:
Person(string name, int age)
{
this->m_Name = name;
this->m_Age = age;
}
string m_Name;
int m_Age;
};

//普通函数模板
template<class T>
bool myCompare(T& a, T& b)
{
if (a == b)
{
return true;
}
else
{
return false;
}
}


//具体化,显示具体化的原型和定意思以template<>开头,并通过名称来指出类型
//具体化优先于常规模板
template<> bool myCompare(Person &p1, Person &p2)
{
if ( p1.m_Name == p2.m_Name && p1.m_Age == p2.m_Age)
{
return true;
}
else
{
return false;
}
}

void test01()
{
int a = 10;
int b = 20;
//内置数据类型可以直接使用通用的函数模板
bool ret = myCompare(a, b);
if (ret)
{
cout << "a == b " << endl;
}
else
{
cout << "a != b " << endl;
}
}

void test02()
{
Person p1("Tom", 10);
Person p2("Tom", 10);
//自定义数据类型,不会调用普通的函数模板
//可以创建具体化的Person数据类型的模板,用于特殊处理这个类型
bool ret = myCompare(p1, p2);
if (ret)
{
cout << "p1 == p2 " << endl;
}
else
{
cout << "p1 != p2 " << endl;
}
}

int main() {

test01();

test02();

system("pause");

return 0;
}

总结:

  • 利用具体化的模板,可以解决自定义类型的通用化
  • 学习模板并不是为了写模板,而是在STL能够运用系统提供的模板